Hi-Def Pics – The Sun and All Its Glory (11 photos)

A sweeping prominence, a huge cloud of relatively cool dense plasma is seen suspended in the Sun’s hot, thin corona. At times, promineces can erupt, escaping the Sun’s atmosphere. Emission in this spectral line shows the upper chromosphere at a temperature of about 60,000 degrees K (over 100,000 degrees F). Every feature in the image traces magnetic field structure. The hottest areas appear almost white, while the darker red areas indicate cooler temperatures. (Courtesy of SOHO/EIT consortium)

Detailed closeup of magnetic structures on the Sun’s surface, seen in the H-alpha wavelength on August 22, 2003. (Swedish 1-m Solar Telescope (SST) operated by the Royal Swedish Academy of Sciences, Oddbjorn Engvold, Jun Elin Wiik, Luc Rouppe van der Voort)

The total solar eclipse of February 16, 1980 was photographed from Palem, India, by a research team from the High Altitude Observatory of the National Center for Atmospheric Research. The photograph of the solar corona was taken with a camera system developed by Gordon A. Newkirk, Jr. This specialized instrument photographs the corona in red light, 6400 A — through a radially graded filter that suppresses the bright inner corona in order to show the much fainter streamers of the outer corona in the same photograph. (Rhodes College, Memphis, Tennessee / High Altitude Observatory (HAO), University Corporation for Atmospheric Research (UCAR))

An animation of the sun, seen by NASA’s Extreme ultraviolet Imaging Telescope (EIT) over the course of 6 days, starting June 27, 2005. (Courtesy of SOHO/EIT consortium)

The image shows the corona for a moderately active Sun, with some (red) hot active regions in both hemispheres, surrounded by the (blue/green) cooler plasma of the quiet-Sun corona. Notice also the north polar-crown filament, the trans-equatorial loops, and the coronal hole in the south-east (lower-right) corner of the image and the smaller one over the north pole. This image shows the solar corona in a false-color, 3-layer composite: the blue, green, and red channels show the 171, 195, and 284 wavelengths, respectively (most sensitive to emission from 1, 1.5, and 2 million degree gases). (TRACE Project, Stanford-Lockheed Institute for Space Research, NASA)

The Sun, observed on May 22, 2008. With the Sun persisting in a near-minimal state of activity, only a few small regions of some activity are seen on the disk. The cell-like appearance is formed by the multitude of small clusters of magnetic flux that are collected in the downflow regions of the supergranular network of convective motions.

A display of thin loops is seen arching above active regions of the Sun on January 1, 2001. (Courtesy Dick Shine, NASA/TRACE)

This LASCO C2 image, taken 8 January 2002, shows a widely spreading coronal mass ejection (CME) as it blasts more than a billion tons of matter out into space at millions of kilometers per hour. The C2 image was turned 90 degrees so that the blast seems to be pointing down. An EIT 304 Angstrom image from a different day was enlarged and superimposed on the C2 image so that it filled the occulting disk for effect (Courtesy of SOHO/LASCO consortium)

NASA’s STEREO (Ahead) spacecraft observed this visually stunning prominence eruption on Sept. 29, 2008 in the 304 wavelength of extreme UV light. It rose up and cascaded to the right over several hours, appearing something like a flag unfurling, as it broke apart and headed into space. The material observed is actually ionized Helium at about 60,000 degrees. Prominences are relatively cool clouds of gas suspended above the Sun and controlled by magnetic forces. (NASA/STEREO)

A transit of the Moon across the face of the Sun on February 25, 2007 – but not seen from Earth. This sight was visible only from the STEREO-B spacecraft in its orbit about the sun, trailing behind the Earth. NASA’s STEREO mission consists of two spacecraft launched in October, 2006 to study solar storms. STEREO-B is currently about 1 million miles from the Earth, 4.4 times farther away from the Moon than we are on Earth. As the result, the Moon appears 4.4 times smaller than what we are used to. (NASA/STEREO)

On September 30, 2001, TRACE observed an M1.0 flare in an active region very near to the solar limb. Fragments of a prominence hovered above the regions, with filamentary dark (relatively cool) material moving along the field lines, which then spread to form this dragon-like bright outline. (NASA/TRACE) Courtesy of the Boston Globe More Hi-Def Pics: World Animal Day (18 photos) Beautiful Days of Autumn (14 photos) Earth From Above: Stunning Images (22 photos) Magnificent Antarctica (15 photos) Strikingly Beautiful Shots of Etosha National Park, Namibia (13 photos) A Heavy Taliban Combat Area: Afghanistan’s Korengal Valley (15 photos)

Get Our Weekly Newsletter